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THE HOMOGENEOUS ELECTRON BOLTZMANN EQUATION 

In molecular gas discharges running at very-low E/N (E is the electric field and N is the gas density) electron-

neutral rotational and vibrational collisions are competitive enough to become important energy-transfer 

channels, influencing the electron energy distribution function and the corresponding swarm parameters. 

In this work, the homogeneous electron Boltzmann equation, written under the classical two-term approximation, 

is solved in N2, O2 and H2 for E/N = 10−4 − 10 Td. A code is especially developed for this purpose [1], adopting 

three different approaches to describe electron-neutral rotational excitations / de-excitations: (i) using the discrete 

inelastic / superelastic collisional operator for rotations (DCOR), written for a number of levels that depends on 

the molecular gas and the specific rotational cross sections considered; (ii) replacing the discrete collisional 

operator for rotations by a continuous approximation for rotations (CAR), deduced for the set of rotational cross 

sections derived by Gerjuoy and Stein [2] from the Born approximation (BA); (iii) generalizing the CAR 

expression to include a “Chapman-Cowling term” proportional to the gas temperature Tg [3] (CC-CAR), similarly 

to what is usually adopted for the elastic collision operator [4], trying to bridge the gap between approaches (i) 

and (ii) for low / intermediate E/N values at various Tg.  

To assess the validity of these approaches and of the rotational cross sections adopted for the different gases 

[2,5], calculation results are compared with measurements for the available swarm parameters, namely the 

electron mobility and the electron characteristic energy. 
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For N2 and O2 very good swarm predictions 

(within experimental uncertainty) are obtained 

using both DCOR, with BA cross sections, and 

CC-CAR. For N2, the BA cross sections fail to 

correctly describe the energy exchanges. For 

H2, only DCOR with accurate cross sections 

gives satisfactory results. Moreover, CC-CAR 

fails below 1 Td, though yielding correct 

limiting values at zero field.  

Results confirm that CC-CAR works only in 

cases where many rotational levels are 

populated. 

CONCLUSIONS 

Cross sections from the IST-LISBON database with LXCat (www.lxcat.net).  

Relative densities of the rotational levels J assumed to follow a Boltzmann 

distribution at gas temperature  

 

Summary: 

- vibrational excitations v = 0  v’ (10 transitions for N2 ; 4 for O2  ; 3 for H2) 

- rotational excitations/de-excitations J  J+2  

N2: J=0,1,2…,30 (B ~ 2.5x10-4 eV); cross sections of Gerjuoy and Stein (1955) 

O2: J=1,3,5…,30 (B ~ 1.8x10-4 eV); cross sections of Gerjuoy and Stein (1955) 

H2: J=0,1,2…,20 (B ~ 7.3x10-3 eV); cross sections are as follows 

J=0,1 – see figure; 2  4 and 3  5, Lane and Geltman (1967) 

J  J + 2 transitions (J > 4), Gerjuoy and Stein (1955)  

We have considered separate density distributions for the para- and the ortho- 

systems of hydrogen, behaving as two independent components of a non-

equilibrium mixture, taking Zortho = 3 Zpara. 

CROSS SECTIONS 
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