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INTRODUCTION THE HOMOGENEOUS ELECTRON BOLTZMANN EQUATION

In molecular gas discharges running at very-low E/N (E is the electric field and N is the gas density) electron-
2¢ d [u (E/N)*df  2m (f N kg, df

neutral rotational and vibrational collisions are competitive enough to become important energy-transfer N4/ + o,

channels, influencing the electron energy distribution function and the corresponding swarm parameters. mdu 3 o du M e du
In this work, the homogeneous electron Boltzmann equation, written under the classical two-term approximation,
is solved in N,, O, and H, for E/N = 10™* = 10 Td. A code is especially developed for this purpose [1], adopting . 50
three different approaches to describe electron-neutral rotational excitations / de-excitations: (i) using the discrete Jiot = N \/;Z 0y [(u+ g y2)0s002(u + wyri2) Fu+ wsg42) = uoy () f(u)]
inelastic / superelastic collisional operator for rotations (DCOR), written for a number of levels that depends on 5 !

the molecular gas and the specific rotational cross sections considered:; (ii) replacing the discrete collisional Jrot = N\/;Z&J [(w—wy_2s)os -2 —us_2g)f(u—us_o;)—uos;_o(u)f(u)
operator for rotations by a continuous approximation for rotations (CAR), deduced for the set of rotational cross !

sections derived by Gerjuoy and Stein [2] from the Born approximation (BA); (iii) generalizing the CAR The continuous approximation for rotations (CAR)

expression to include a "Chapman-Cowling term” proportional to the gas temperature T, [3] (CC-CAR), similarly ~sup 2¢ d

. . .. . . . ‘31“013 = ‘Sif(ﬁl + ‘Jrot = N - 5 (40-OBUf)
to what is usually adopted for the elastic collision operator [4], trying to bridge the gap between approaches (i) m du The Gerjuoy and Stein cs

and (ii) for low / intermediate E/N values at various T,,. _ _ 12
To assess the validity of these approaches and of the rotational cross sections adopted for the different gases The Chapman-Cowling correction to CAR (CC-CAR) as+2(u) = a(J) ( u )
[2,5], calculation results are compared with measurements for the available swarm parameters, namely the 3o =gl g oy 2e d dooBu [ f+ kpT, df Nz g 2T +1)

- o IO rot rot mdu e du Oé( )_UO(2J+3)(2J+1)
electron mobility and the electron characteristic energy.

)] g gy g

The discrete collisional operator for rotations (DCOR)
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ROSS SECTIONS

et eemrermemere 101 e . . . . . Cross sections from the IST-LISBON database with LXCat (www.|xcat.net).
1: NITROGEN | OXYGEN ] HYDROGEN Relative densities of the rotational levels J assumed to follow a Boltzmann
10 L - i K\ distribution at gas temperature n; /N = pJexp[— eBJ(J +1) /(kBTg )J/Z
| ) f 1l Summary:
107} - vibrational excitations v = 0 — v’ (10 transitions for N, ; 4 for O, ; 3 for H,)

- rotational excitations/de-excitations J <> J+2
N,: J=0,1,2...,30 (B ~ 2.5x104 eV); cross sections of Gerjuoy and Stein (1955)
0,:J=1,3,5...,30 (B ~ 1.8x10* eV); cross sections of Gerjuoy and Stein (1955)
H,: J=0,1,2...,20 (B ~ 7.3x102 eV); cross sections are as follows
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B [Wingerden et al. (1977)]
] 3 _ l ] —— Vibrational excitation (v=0 -> v'=1) ] .
b —— Effective momentum-transfer 10_ | — Effective momentum-transfer [Nishimura et al. (1985)] ] J=0,1 — see flgure; 2 4and 3o 5, Lane and Geltman (1967)
[ —— Vibrational (v=0 -> v'=1) ] f — Vibrational (v=0 -> v'=1) —— Rotational excitation (J=0 -> J'=2) 1 . i .
[Pitchford and Phelps (1982); Tachibana and Phelps (1979)]1 [ [Phelps (1985)] _ _ [Crompton et al (1969); Henry and Lane (1969)] 1 J & J+ 2 transitions (J > 4), Gerjuoy and Stein (1955)
10-3 | —— Rotational (J=0 -> J'=2) [Gerjuoy and Stein (1955)] ] [ — Rotational (J=0 -> J'=2) [Gerjuoy and Stein (1955)] _ ] — = Rotational excitation (J=1 -> J'=3) : _ _ o _

F — — Rotational (J=0 -> '=2) [Oksyuk (1966)] ] 4| ~ ~ Rotational (3=0 -> J'=2) [Oksyuk (1966)] 2 [Gibson (1970); Heaps and Green (1975)] We have considered separate density distributions for the para- and the ortho-
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10 10 10 10 100 10 10 10 10 10 0 2 4 6 8 10 systems of hydrogen, behaving as two independent components of a non-

u (eV) u (eV) u(eVv) equilibrium mixture, taking Zy o = 3 Zpara-
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