Kinetic mechanisms in CO₂-N₂ plasmas

<u>Chloé Fromentin</u>¹, Tiago Silva¹, Tiago C. Dias¹, Vasco Guerra¹, Edmond Baratte², Ana Sofia Morillo-Candas^{2,4}, Olivier Guaitella² and Omar Biondo³

¹ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal

² Laboratoire de Physique des Plasmas (UMR 7648), CNRS, Univ. Paris Saclay, Sorbonne Université, École Polytechnique, France

Plasma Lab for Applications in Sustainability and Medicine – ANTwerp, Belgium
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland (current affiliation)

Type of presentation: (Oral)

Attendance: (In-Person)

Status of Presenter: (Student)

Abstract (about 150 words with free format)

This contribution reports the comparison of simulation results from a 0D self-consistent kinetic model with recent experimental data obtained in low-pressure DC discharges in CO_2 - N_2 . This work will thus contribute to further develop the existing models [1-3] and will allow us to investigate the impact of N_2 on the plasma kinetics, relevant, since the admixture of N_2 is beneficial for CO_2 decomposition [1,4].

The system of election is a DC glow discharge, operating at a few Torrs and tens of mA in a Pyrex tube of radius 1 cm. The set of measurements provides the gas temperature, vibrational temperatures of CO and the various modes of CO₂, reduced field E/N, and densities of O(3 P), CO($X^1\Sigma^+$) and CO₂($X^1\Sigma^+$ g). The simulations are carried out with the LoKI simulation tool [5]. The reasons underlaying the positive effect of N₂ in CO₂ dissociation will be discussed at the conference.

Acknowledgments: This work was partially supported by the European Union's Horizon 2020 research and innovation programme under grant agreement MSCA ITN 813393, and by Portuguese FCT-Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020, UIDP/50010/2020 and PTDC/FIS-PLA/1616/2021.

Reference

- [1] L. Terraz et al, J. Phys. D: Appl. Phys. 53 (2020) 094002
- [2] A. F. Silva et al, Plasma Sources Sci. Technol. 29 125020 (2020)
- [3] S. Heijkers et al, J. Phys. Chem. C 119 (2015) 12815–12828
- [4] M. Grofulović et al, Plasma Sources Sci. Technol. 28 (2019) 045014
- [5] A. Tejero-del-Caz et al, Plasma Sources Sci. Technol. 28 (2019) 073001

[https://nprime.tecnico.ulisboa.pt/loki]