Kinetic mechanisms in CO₂-N₂ plasmas

C. Fromentin¹, T. Silva¹, T. Dias¹, E. Baratte², O. Guaitella², O. Biondo³ and V. Guerra¹

Abstract:

Investigating the impact of N_2 on the overall CO_2 conversion is relevant as N2 can be present as an impurity in industrial CO₂ emission and can be used to promote CO2 vibrational excitation and further molecular dissociation through the socalled ladder climbing mechanism. The system of election is a DC glow discharge, operating at pressures in the range p=0.1-10 Torr and discharge currents I=10-50 mA, in a Pyrex tube of radius R=1 cm, which is stable, axially homogenous, and easily accessible to a variety of diagnostics. The set of measurements provides the gas temperature, vibrational temperatures of CO_2 , reduced field E/N, and densities of $O(^3P)$, NO, NO₂, CO($X^1\Sigma^+$) and CO₂($X^1\Sigma^+_g$). Our simulation results are obtained with the LoKI (LisbOn Kinetics) simulation tool [1] solving a Boltzmann-chemistry 0D self-consistent kinetic model. The comparison of the model predictions with the experimental data allows the development of a new reaction mechanism (i.e., a set of reactions and rate coefficients validated against benchmark experiments) for CO₂-N₂ plasmas and provides physical insights into the main mechanisms occurring in these plasmas.

It is shown that the admixture of N₂ has a beneficial impact on CO2 decomposition, as also pointed out in [2,3]. Several reasons can be assigned to it, one of them being the transfer of vibration quanta from the first vibrational level of N₂ to the asymmetric mode of CO₂ and the fact that vibrationally excited CO₂ can undergo molecular dissociation through the so-called ladder climbing mechanism or by electron impact stepwise processes. Moreover, the dilution with N₂ can also limit the influence of back reaction mechanisms producing back CO2 from CO. These mechanisms will be discussed in the detail at the conference. Understanding the impact of the different processes on the overall kinetics, along with the validation against experimental data, will contribute to further develop the existing models [3-5] and to better control and enhance plasma-assisted CO₂ conversion.

Keywords: glow discharge, CO₂ decomposition, vibrational excitation, 0D model.

Acknoledgments: This work was partially supported by the European Union's Horizon 2020 research and innovation programme under grant agreement MSCA ITN 813393, and by Portuguese FCT-Fundação para a Ciência e a Tecnologia, under projects UIDB/50010/2020 and UIDP/50010/2020.

References:

- 1. A. Tejero-del-Caz et al, Plasma Sources Sci. Technol. 28 (2019) 073001 [https://nprime.tecnico.ulisboa.pt/loki]
- 2. M. Grofulović et al, Plasma Sources Sci. Technol. 28 (2019) 045014
- 3. L Terraz et al, J. Phys. D: Appl. Phys. 53 (2020) 094002
- 4. A F Silva et al, Plasma Sources Sci. Technol. 29 125020 (2020)
- 5. S. Heijkers et al, J. Phys. Chem. C 119 (2015) 12815–12828

 ¹ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal
² Laboratoire de Physique des Plasmas (UMR 7648), CNRS, Univ. Paris Saclay, Sorbonne Université, École Polytechnique, France

³ Plasma Lab for Applications in Sustainability and Medicine – ANTwerp, Belgium