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Electron kinetics in pulsed plasmas

Motivation

Increasing interest in non-equilibrium LTPs created by pulsed discharges, for different 

technological applications
• nanosecond pulsed discharges for plasma-assisted ignition and combustion [Starikovskaia (2006), 

Samukawa et al (2012), Popov (2016)]
• plasma chemical-conversion, involving dry reforming, plasma pyrolysis and management of CO2

[Adamovich et al (2017)]

The voltage applied to gases at intermediate-to-high pressures, during the nanosecond 

to microsecond time-scale typical of breakdown, greatly affects the plasma parameters 

and composition
• N2 [Colonna et al (2015)]
• Air [Tholin and Bourdon (2013); Rusterholtz et al; Xu et al (2014); Simek and Bonaventura (2018); Janda et 

al (2018)]
• N2-O2 [Lepikhin et al (2018)]; N2-H2 [Colonna et al (2020)]
• H2-air [Kobayashi et al (2017)], C2H4-air [Burnette et al (2016)], HC-air [Aleksandrov et al (2014)]
• CO2 [Mei et al (2015); Moss et al (2017)]; CH4 [Zhang (2018)]; CH4-CO2 [Scapinello et al (2016)]
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Electron kinetics in pulsed plasmas

Modelling: possible workflow for global models
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Electron kinetics in pulsed plasmas

Modelling: self-consistency (also in time) 

Efforts to analyze the electron kinetics as a function of time

• homogeneous plasmas excited by time-varying sinusoidal electric-fields
[Fourier-development of 2-term electron Boltzmann equation (EBE)]
o influence of e-V in N2 and H2 [Loureiro (1993)]
o time-evolution of Ar excited states in HF plasmas [Sá et al (1994)]

• discharges and afterglows [solving the time-dependent EBE]
o time-evolution of the EEDF in N2 post-discharge [Guerra et al (2001)] 
o + coupling with heavy-particles balance equations (including VDF) in N2, N2-H2 and CO2, discharges and 

post-discharges [Guerra et al (2003); Colonna et al (2015, 2020); Pietanza (2020)]

• electron diffusion in time-dependent ExB fields [Monte Carlo simulations] 
[Raspopovic et al (2000); White et al (2008)]

• time or the space-time analyses of electron relaxation
[2-term / multi-term EBE and Monte Carlo simulations]
o in argon plasmas [Loffhagen et al (2002); Trunec et al (2006)]
o argon-fluorine decaying plasmas [Dyatko et al (2005)] 
o nanosecond breakdown in atmospheric air [Hoder et al (2016)]

Seminal works of Capitelli and co-workers [Gorse et al (1985,1987,1988)]
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Electron kinetics in pulsed plasmas

BUT…

• using effective source terms for the electron-impact creation of excited species
[Carbone et al (2016)]

• considering a quasi-stationary description for electrons by solving a time-independent 

form of the EBE for chosen values of E/N

[Simek and Bonaventura (2018), Wang et al (2018), Heijkers et al (2019)] 

Boltzmann solver

Chemistry solver

Numerical tool

time description coupling 
assuming approximations

Limitations in publicly available tools for solving the EBE ?
- ELENDIF, BOLOS, METHES, Magboltz (DC electric fields)
- BOLSIG+, EEDF, LoKI (DC and HF electric fields)
- MultiBoltz (multi-harmonic model for intense microwave and THz fields)
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Outline

Analysis of the electron kinetics under E(t) pulses

• Formulation(s) adopted in solving the EBE
time-dependent formulation

quasi-stationary approach

• Results in dry air (80%N2 : 20%O2)

step-fields (τon →∞) with different τrise ~ 0 - 1 µs

typical discharge pulses at limited τon and τrise ~ ns, µs

[stationary neutral gaseous background: no coupling with chemistry model]

• Final remarks
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The LisbOn Kinetics Boltzmann solver
was developed as a response to the need of having an electron 
Boltzmann solver easily addressing the simulation of the electron 
kinetics in any complex gas mixture (of atomic / molecular 
species), describing first and second-kind electron collisions with 
any target state (electronic, vibrational and rotational), 
characterized by any user-prescribed population.

The LisbOn Kinetics Boltzmann solver
was developed as a response to the need of having an electron 
Boltzmann solver easily addressing the simulation of the electron 
kinetics in any complex gas mixture (of atomic / molecular 
species), describing first and second-kind electron collisions with 
any target state (electronic, vibrational and rotational), 
characterized by any user-prescribed population.

The LisbOn KInetics Boltzmann solver (LoKI-B)
(developed under MATLAB®)

loki@tecnico.ulisboa.pt

A. Tejero-del-Caz et al Plasma Sources Sci. Technol. 28 (2019) 043001
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Formulation(s) adopted

2-term approximation for the EBE
• homogeneous (space-independent) description

• variation of the electron density due to non-conservative binary events 

(ionization and attachment)

• steady-state form for the anisotropic equation

… the EEDF
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Formulation(s) adopted
Time-dependent electron Boltzmann equation

… upflux function (e.g., ohmic heating, elastic, rotational, Coulomb continuous operators)

… inelastic / superelastic collision discrete operator 

The characteristic evolution time of the EEDF is much larger than the 

characteristic evolution time of the anisotropic component

… steady-state form
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Formulation(s) adopted
Quasi-stationary electron Boltzmann equation

solution of the quasi-stationary EBE …
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Results in dry air

Working conditions
Dry air (80%N2 : 20%O2) @ p = 105 Pa and 133 Pa ; Tg = 300 K

Initial condition : Maxwellian EEDF at 300 K

Assuming

- Boltzmann distributions at 300 K for the VDFs of N2(X,v=0-10) and O2(X,v=0-4)

- the continuous approximation to describe rotational excitations / deexcitations

Electron-scattering cross sections published at the IST-Lisbon database with LXCat
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The natural response time of the electrons at 

atmospheric pressure is of the order of ~10ps

Results in dry air – step fields
The electron mean energy
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At 1atm and room temperature
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Results in dry air – step fields
The electron energy distribution function
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Results in dry air – step fields
The power balance per electron (at unit gas density)
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Results in dry air – field pulse
The electron energy distribution function - I
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Results in dry air – field pulse
The electron energy distribution function - II
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Results in dry air – field pulse
The electron energy distribution function - III
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Results in dry air – field pulse
Criterion for quasi-stationary simulations
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The quasi-stationary approach holds for

p = 105 Pa and τ = 8x10-8 s p = 133 Pa and τ = 6x10-5 s

τrise 10-9 s Fail Fail

τfall 10-8 s Fail Fail

τrise 10-6 s OK Fail

τfall 10-5 s OK Fail

At low pressure, there is no instantaneous collisional transfer of the E-field 

energy into the gas, hence the slow temporal increase of the electron mean 
(kinetic) energy
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Results in dry air – field pulse
The power balance per electron (at unit gas density)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.0

0.1

0.2

0.3

0.4

0.5

3

1

2 4

 E
/E

0

t / τ
rise

E0/N = 100 Td

p = 133 Pa p = 105 Pa

10
-6

10
-4

10
-2

10
0

10
2

10
-20

10
-18

10
-16

10
-14

τ
rise

 = 10
-9
 s

 

Θ
x
/N

 (
eV

 m
3
 s

-1
)

10
-6

10
-4

10
-2

10
0

10
2

10
-20

10
-18

10
-16

10
-14

t/τ
rise

τ
rise

 = 10
-6
 s

 

Θ
x
/N

 (
eV

 m
3
 s

-1
)

10
-6

10
-4

10
-2

10
0

10
2

10
-20

10
-18

10
-16

10
-14

τ
rise

 = 10
-9
 s

 

10
-6

10
-4

10
-2

10
0

10
2

10
-20

10
-18

10
-16

10
-14

t/τ
rise

τ
rise

 = 10
-6
 s

 

 

 time-dependent
 quasi-stationary 



Modern Problems of Plasma Physics, 3 July 2020, EP5-RUB L.L. Alves / N-PRiME 20

Results in dry air – field pulse
Ionization rate coefficients
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Similar observations for other (excitation) rate coefficients
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Final remarks

• Analysis of the time evolution of the electron kinetics in dry-air plasmas

- excited by electric-field pulses (τrise ~ ns to µs; p = 133 Pa, 105 Pa) 

- applied to a stationary neutral gaseous background

- adopting (i) time-dependent formulation; (ii) quasi-stationary approach

• Two major approximations

- steady-state form for f1 (τ1 ~ 4x10-13 s << τ @ atm. pressure)

[potential uncertainties in the ps range]

- space-independent form of the EBE

[no description of local space-time transient phenomena]

• Quasi-stationary description

- holds for high-collisionality and long rise-times 

[e.g. microsecond pulses at atmospheric pressure]

- fails for fast risetimes 

[e.g. nanosecond pulses, irrespectively of the pressure]
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Final remarks

• Role of collisionality in evolution times

similar results obtained for 

long pulses / low pressures and short pulses / high pressures

→ optimization of the pulse duration, depending on the gas pressure, 

to maximize electron energy absorption 

• Inclusion of the effects of heavy-particle interactions (e.g., VVs & VTs)

- can alter modelling predictions (especially beyond the µs scale and/or in multi-

pulse scenarios)

- caused by deviations in electron rate coefficients at low pressures and/or short 

rise-times

- correct approach: fully-coupled time-dependent Boltzmann-Chemistry calcs.

→ future work
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