

I DIN INSTITUTO DE E FUSÃO NUCI

ASIMAS

Global modelling of non-equilibrium LTPs

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal http://www.ipfn.ist.utl.pt https://www.ipfn.tecnico.ulisboa.pt/nprime/

Europhysics Conference on Atomic and Molecular Physics of Ionized Gases 9-13 July 2024, Brno, Czech Republic

Instituto de Plasmas e Fusão Nuclear

Sole R&D unit of Plasma Science and Technology in Portugal

FEUP | Faculdade de Engenharia da Universidade do Porto

UBI Universidade da Beira Interior

UC Universidade de Coimbra

IST/CTN | Loures Campus (Lisbon)

IST Alameda Campus (Lisbon)

UAI | Universidade do Algarve

UMa Universidade da Madeira

Staff: 160 people (90+ PhDs)

Instituto de Plasmas e Fusão Nuclear Key research activities

Low-T Plasma Sci and Engineering

High energy-density

APPLAuSE

Advanced Programme in Plasma Science and Engineering

Advanced Training

Instituto de Plasmas e Fusão Nuclear

Kinetic shock-tube to simulate entry plasmas, designed to reach shock-speeds in excess of 12km/s.

Platform for single-step synthesis of multi 2D-materials: free-standing graphene, Ngraphene and nanocomposites.

Fundamental component in any research domain

- **complementing** and/or aiding experimental diagnostics
- providing predictions on the behavior of significant quantities (especially when experimental access is limited)
- contributing to a deeper understanding of the field's fundamental knowledge

LTP models prove particularly valuable and challenging given the inherent complexity of the medium

- often characterized by different material phases
- composed by charged particles and by neutral species in different excited states
- intrinsically in **non-equilibrium**

I Adamovich et al. 2022 J. Phys. D: Appl. Phys. 55 373001

Popular choice to study plasma chemistry

Adopt a spatial averaged description,

- hence involving little computational effort
- allow describing in detail the plasma chemistry in complex gas mixtures
- should include transport effects especially at low to intermediate pressures

Usually involve the coupled solution of **Chemistry solver** (to solve the "plasma chemistry") **Boltzmann solver** (to describe the "electron kinetics") The non-equilibrium features of the eedf can significantly change (> 20-30%) the values of the electron parameters

L L Alves et al. 2018 Plasma Sources Sci. Technol. 27 023002

Solution of global models

Example of codes used in the LTP community

- ZDPlasKin (freeware code)
 S Pancheshnyi *et al.* 2008 ZDPlasKin (www.zdplaskin.laplace.univ-tlse.fr)
- GlobalKin (available upon request)
 A M Lietz and M J Kushner 2016 J. Phys. D: Appl. Phys. 49 425204
 D S Stafford and M J Kushner 2004 J. Appl. Phys. 96 2451
- Quantemol-P (commercial application extending GlobalKin) J J Munro and J Tennyson 2008 J. Vac. Sci. Technol. A 26 865
- PLASIMO (commercial software containing global model) J van Dijk *et al.* 2009 *J. Phys. D: Appl. Phys.* **42** 194012

• LisbOn KInetics (LoKI-B+C) (to be released as open-source)

nprime.tecnico.ulisboa.pt/loki/ A Tejero-Del-Caz et al., Plasma Sources Sci. Technol. **28** (2019) 043001 V Guerra et al., Plasma Sources Sci. Technol. **28** (2019) 073001

Outline

The LisbOn KInetics (LoKI-B+C) tool

Description Chemistry model Workflow

LoKI-B+C input / output

Connection to LXCat Formats for I/O

Results, validation, uncertainties

Oxygen plasma model N₂-H₂ plasma model

Final remarks

The LoKI-B+C simulation tool

LoKI-B OPEN SOURCE The LisbOn KInetics (LoKI-B+C) simulation tool

(developed under MATLAB®)

https://github.com/IST-Lisbon/LoKI

- solves the space independent form of the two-term electron Boltzmann equation, for DC/HF or time-dependent (non-oscillatory) electric fields.
- includes e-e collisions, CAR operator, and growth models for the electron density.

LoKI-C

- solves the system of 0D rate balance equations for the heavy particles of pure gases or gaseous mixtures.
- includes modules to describe
- (i) the collisional, radiative and transport mechanisms controlling the creation / destruction of volume and surface species
- (ii) the thermal heating of the neutral gas

LoKI-B+C has been developed to handle kinetic schemes

- in any atomic / molecular gas mixture
- describing collisional encounters between any electron / neutral / ion species
- considering targets in any excited state (electronic, vibrational, rotational)
- characterized by **any population** (eventually, user-prescribed)

LoKI-B considers first and second-kind electron collisions including anisotropic effects for elastic and rotational collisions

LoKI-B+C: description

Software features

Developed under Matlab®

to benefit from its matrix-based architecture

- C++ version of LoKI-B is under development (to be integrated in PLASIMO)
- Adopts flexible and upgradable object-oriented programming
- Follows an ontology that that privileges the separation between tool and data
- User and developer friendly (easy to use / maintain / upgrade)

History / status / roadmap

- First closed beta version of LoKI-B was released early 2017
- The Validation & Verification of the tool has been carried out
- First public release of LoKI-B: March 2019
- Current versions (November 2022)
 LoKI-B_v2.2.0 (open source)
 LoKI-C_v3.1.0 (internal release; to become open source)

LoKI-C: chemistry solver

The spatial-average particle balance equation: "chemistry" source-term

$$\frac{dn_k}{dt} = S_k^{\text{chem}} + S_k^{\text{transp}} \qquad \begin{array}{l} \text{Kinetic scheme} \\ \sum_k a_{kj}^{(1)} A_k \xrightarrow{k_j} \sum_{k'} a_{k'j}^{(2)} A_{k'} \\ S_k^{\text{chem}} = \sum_{j=\text{chem}} \left\{ \left[a_{kj}^{(2)} - a_{kj}^{(1)} \right] k_j \Pi_l n_l^{a_{kj}^{(1)}} \right\} \\ k_j = \left\{ \begin{array}{l} \left(\frac{2}{m_e} \right)^2 \int_0^\infty u \sigma_j(u) f(u) du \\ \sigma T^\beta \exp\left[-\frac{T_{\text{ref}}}{T} \right] \\ g_j A_j \end{array} \right\} \text{ for h-collisions} \\ \begin{array}{l} \text{Electron energy} \\ \text{distribution function} \end{array} \right.$$

L L Alves et al. 2018 Plasma Sources Sci. Technol. 27 023002

ipfn

ESCAMPIG, 9-13 July 2024, Brno, Czech Republic

L.L. Alves / N-PRiME

LoKI-C: chemistry solver

The spatial-average particle balance equation: "transport" term

$$\begin{aligned} \frac{dn_k}{dt} &= S_k^{\text{chem}} + S_k^{\text{transp}} \\ S_k^{\text{transp}} &= \begin{cases} \sum_{j=\text{transp}} a_{kj}^{(2)} \frac{n_l}{\tau_j} - \frac{n_k}{\tau_{\text{transp}k}} &\text{, for neutral species} \\ -\nu_k^{\text{transp}} n_k &\text{, for charged species} \end{cases} \\ \tau_{\text{transp}_k} &= \frac{\Lambda^2}{D_k} + \frac{1 - \gamma_k/2}{\gamma_k \langle v_k \rangle} \frac{2RL}{L+R} \\ \Lambda^2 &= \left[\left(\frac{\pi}{L}\right)^2 + \left(\frac{2.405}{R}\right)^2 \right]^{-1} \end{aligned}$$
Electron kinetics

L L Alves et al. 2018 Plasma Sources Sci. Technol. 27 023002

ESCAMPIG, 9-13 July 2024, Brno, Czech Republic

L.L. Alves / N-PRiME

LoKI-C: model features

Considers both volume and surface kinetic mechanisms
 The extension to a surface kinetics considers a mesoscopic description
 L. L. Alves et al. 2018 Plasma Sources Sci. Technol. 27 023002
 D. Marinov et al. 2017 Plasma Process Polym. 14 1600175

- Considers several transport models for charged / neutral species
- Includes many predefined functions to calculate rate coefficients e-collisions, h-collisions, radiative transitions, surface reactions with physical/chemicaladsorbed species, transport losses, ...
- Includes gas thermal balance model
- Allows describing discharge and post-discharge scenarios

LoKI-B+C: workflow

LoKI-B+C: run testcase (speed 8x)

Input data refers to general setup, electron kinetics, chemical reactions

LoKI-B+C follows a clear ontology for data handling

- it separates the tool from data
- it receives electron scattering cross sections, parsed adopting a format compliant with the open-access website LXCat

Publishing data in a public database is advantageous for both users and developers

- to separate tools and data (enhancing flexibility of studies)
- to ensure the **open access** to data
- to promote using validated data (increasing scientific rigor)
- to encourage a **standardized classification and organization** of data

\Rightarrow Publishing metadata is also essential

Currently, LoKI-B+C loads data and metadata using datafiles

 \Rightarrow Not ideal for guaranteeing data / metadata integrity

actor

LoKI and LXCat 3.0 : the future

Courtesy D Boer and J van Dijk

LXCat 3.0 provides major improvements

to the way data is structured, annotated, stored, and accessed

- LTP data is encoded as JSON objects, whose structure is dictated by dedicated schemas
- Data accessibility is improved by providing an official API

ipfn INSTITUTO DE PLASMAS FUSÃO NUCLEAR

LoKI and LXCat 3.0 : the future (cont.) Courtesy D Boer and J van Dijk

localhost:10010/ × +	 Priva 	ate browsing $-$ 🗗 $ imes$
\leftarrow \rightarrow C O D localhost:10010	90% 🖒	⊻ Ճ 😇 ≡
Run Browse No file selected.		

LXCat 3.0 is open-source!

R	Inspector	Console	Debugger	↑↓ Network	<pre>{} Style Editor</pre>	O Perform O Perform O	mance	D: Mem	ory	🗄 Storag	e »>	ø	<u>.</u>	×
Û	₩ Filter Output					Errors	Warning	gs Logs	Info	Debug	CSS	XHR	Requests	☆
\gg														Ŧ

Expansion to **chemistry data** is in the works

Aces

LoKI-B+C: structured output

Modelling results: validation and uncertainties

Validity of model-type & tool

Global models...

- are spatially averaged models
- focus on plasma chemistry

When to use ?

- homogeneous plasmas (dc / mw)
- intermediate to high pressures ($p > 10 \text{ Pa} \rightarrow \lambda_i < 1 \text{ cm}$)
- dense plasmas ($n_e > 10^{15} 10^{16} \text{ m}^{-3} \rightarrow \lambda_D < 100 \text{ }\mu\text{m}$)

Space / time analysis ?

- dn_k/dt , by properly accounting for the time evolution of the plasma reactivity
- dn_k/dz , in surface-wave reactors, with local solution and resorting to dn_e/dz
- $dn_k/dz = dn_k/dt v_{flow}$, for plug-flow reactors (relate to gas residence time)

The global modelling of plasmas with strong space-time features (e.g. ccp, filamentary plasmas) should preferably follow different approaches

Kinetics schemes for plasma chemistry are meaningful only if validated by comparing simulations with measurements

A higher paradigm involves validating *reaction mechanisms* against *benchmark experiments*

- reaction mechanism is a set of experimentally validated reactions and corresponding rate coefficients
- benchmark experiments represent a significant ensemble of experimental data, intended (or suited) for model validation, obtained in well defined and reproducible conditions, using established diagnostics, and assessing multiple quantities

Validation of oxygen plasma model

Benchmark experiments

Plasmas produced by cylindrical DC glow discharges

- *R* = 1 cm; L = 52.5 cm
- *p* = 30 1000 Pa
- $I_{\rm dc} = 10 40 \, {\rm mA}$

Measurements obtained from

- probe for E/N
- radially averaged VUV; actinometry; on-axis CRDS for densities of species [O₂(X³Δ_q⁻), O₂(a¹Δ_q), O₂(b¹Σ_q⁺) and O(³P)]
- OES of $O_2(b^1\Sigma_g^+)$ and TALIF for \check{T}_g

Laboratoire de Physique des Plasmas (LPP), France Lomonosov Moscow State University (MSU), Russia T C Dias *et al.* 2023 *Plasma Sources Sci. Technol.* **32** 084003

Validation of oxygen plasma model

Simulation vs measurements

The scattering of measurements shows that model validation should focus on the **prediction of trends and orders of magnitude**

Validation of oxygen plasma model Simulation vs measurements (cont.)

Predicting the experimental **gas temperature** and **maintenance reduced electric field** is key to model validation

Validation of oxygen plasma model

Most relevant results

Main creation / destruction mechanisms

- electron-impact excitation/dissociation
- two- and three-body quenching
- wall recombination

J-P Booth *et al.* 2020 *Plasma Sources Sci. Technol.* **29** 115009

Modelling uncertainties

Influence of transport models

$$\frac{dn_{k}}{dt} = S_{k}^{\text{chem}} + S_{k}^{\text{transp}}$$

$$S_{k}^{\text{transp}} = \underbrace{\nu_{k}^{\text{transp}}}_{k}$$

$$P_{k}^{\text{amb}} = \underbrace{\frac{D_{\text{amb}_{k}}}{\Lambda^{2}}}_{P \text{ Coche et al. 2016 J. Phys. D: Appl. Phys. 49 235207}}_{\nu_{k}^{\text{QGM}}}$$

$$\nu_{k}^{\text{QGM}} = \frac{1}{\left(\nu_{k}^{\text{amb}}\right)^{-1} + \left(\nu_{k}^{\text{th}}\right)^{-1}} = \frac{A}{V} \frac{D_{a_{+}} \gamma_{r_{k}}}{\Lambda \gamma_{r_{k}} + \frac{4D_{a_{+}}}{\nu_{\text{th}_{k}}}}$$

$$J \text{ Tennyson et al. 2022 Plasma Sources Sci. Technol. 31 095020}$$

$$\nu_{k}^{\text{h-fact}} = 2u_{\text{B}} \left(\frac{h_{L_{k}}}{L} + \frac{h_{R_{k}}}{R}\right)$$

$$P \text{ Chabert 2016 Plasma Sources Sci. Technol. 25 025010}$$

Modelling uncertainties

Influence of transport models in the description of oxygen plasmas

uncertainties

- of 20-60% in discharge characteristics
- that can reach **60% in the densities** of the main species larger dispersion at low pressure and low discharge current

L L Alves and Tejero-del-Caz 2023 Plasma Sources Sci. Technol. 32 054003

ipfn INSTITUTO DE PLAS E FUSÃO NUCLEAR

Benchmark experiments

SEE POSTER P1-T6-51

Plasmas produced by cylindrical DC glow discharges

- *R* ~ 1 cm; L > 15 cm
- p = 30 400 Pa; $T_g \sim 300 600 \text{ K}$
- $I_{\rm dc} = 5 100 \, {\rm mA}$
- $H_2 = 0 100\%$
- Q = 0 600 sccm
- Non- catalytic surface density 10²⁰ m⁻²

Measurements obtained from

- probe for *E/N*
- densities of NH₃ (FTIR absorption) and atomic H,N (LIF calibrated with VUV)
- fractional ion fluxes (mass spectrometry)

A Chatain *et al.* 2023 *Plasma Sources Sci. Technol.* **32** 035002 B Gordiets *et al.* 1998 *Plasma Sources Sci. Technol.* **7** 379–88

ESCAMPIG, 9-13 July 2024, Brno, Czech Republic

Surface kinetics : mesoscopic description

 $N(4S) + F(v) \longrightarrow N(F)$ $N(F) \longrightarrow N(4S) + F(v)$ $H(1S) + F(v) \longrightarrow H(F)$ $H(F) \longrightarrow H(1S) + F(v)$ $N(4S) + S(v) \longrightarrow N(S)$ $N(F) + S(v) \longrightarrow N(S) + F(v)$ $N(4S) + N(S) \longrightarrow N_2(X, v = 0) + S(v)$ $N(F) + N(S) \longrightarrow N_2(X, v = 0) + S(v) + F(v)$ $H(1S) + S(v) \longrightarrow H(S)$ $H(F) + S(v) \longrightarrow H(S) + F(v)$ $H(1S) + H(S) \longrightarrow H_2(X, v = 0) + S(v)$ $H(F) + H(S) \longrightarrow H_2(X, v = 0) + S(v) + F(v)$ $N(4S) + H(S) \longrightarrow NH(S)$ $N(F) + H(S) \longrightarrow NH(S) + F(v)$ $H(1S) + N(S) \longrightarrow NH(S)$ $H(F) + N(S) \longrightarrow NH(S) + F(v)$ $NH(X) + S(v) \longrightarrow NH(S)$ $H(1S) + NH(S) \longrightarrow NH_2(S)$ $H(F) + NH(S) \longrightarrow NH_2(S) + F(v)$ $NH(X) + H(S) \longrightarrow NH_2(S)$ $NH_2(X) + S(v) \longrightarrow NH_2(S)$ $H(1S) + NH_2(S) \longrightarrow NH_3(X) + S(v)$ $H(F) + NH_2(S) \longrightarrow NH_3(X) + S(v) + F(v)$ $NH_2(X) + H(S) \longrightarrow NH_3(X) + S(v)$ $H_2(X, v = 0) + NH(S) \longrightarrow NH_3(X) + S(v)$

Physisorption/desorption is decoupled from the rest of the surface kinetics

The presence of H/N-atoms is key to trigger the surface kinetics

The chemical bonding of H/Natoms on the surface creates NH and NH_2 , as part of the pathway for NH_3

B Gordiets *et al.* 1998 *Plasma Sources Sci. Technol.* **7** 379–88

Eley-Rideal and Langmuir-Hinshelwood are key mechanisms for NH₃ production

ipfn

ESCAMPIG, 9-13 July 2024, Brno, Czech Republic

Simulation vs measurements

Improving the agreement for the discharge characteristics may require

- decreasing the rate coefficient for production of H₃⁺
- increasing the rate coefficient for production of N₂(A) and N₂(a')

Validation of N_2 - H_2 plasma model

Simulation vs measurements

Large underestimation in the production of NH_3 Good predictions for [H(¹S)] vs H₂%

Simulation vs measurements

In N₂-H₂ discharges with H₂ = 10-90%

- the most relevant ions are N₂H⁺ and NH₄⁺
- good predictions for the fractional ion flux

Main conclusions and future directions

Improve the predictions of discharge characteristics

• Check the kinetic mechanisms for H_3^+ , $N_2(A)$ and N_2H_+

Improve the predictions for [NH₃]

- Surface mechanisms are key in the model of N₂-H₂ plasmas
- Revise the mesoscopic surface model

Check the influence of gas temperature and flow

- Most rate coefficients for heavy-species are T_g -dependent
- The residence time affects the dissociation of species
- The presence of H (and N) atoms is key to control NH₃ production

The potential of modelling as a predictive tool can only be achieved after a validation process, by comparing modelling results with experimental measurements, a step that requires an intense **collaborative work within the community**

Sharing tools and data in open-access can make a decisive contribution

- to improve the quality of tools and data
- to improve the quality of model predictions
- to advance knowledge in LTP chemistry

Acknowledgements

Vasco Guerra Antonio Tejero-Del-Caz Tiago C Dias Nuno Pinhão Carlos D Pintassilgo Luís Marques Tiago Silva **Diogo Ferreira** Shubham Baghel Mário Lino da Silva Pedro Viegas Pedro Pereira João Martins

Olivier Guaitella Jean-Paul Booth

Emile Carbone

Luca Vialetto

TU/e

Funding institution

LoKI-B @ IST-Lisbon Github

Call for Eol to develop LoKI

